ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

Ayman Badawi, Unsal Tekir, and Ece Yetkin

ABSTRACT. Let R be a commutative ring with $1 \neq 0$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a,b,c\in R$ and $abc\in I$, then $ab\in I$ or $ac\in \sqrt{I}$ or $bc\in \sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.

1. Introduction

We assume throughout this paper that all rings are commutative with $1 \neq 0$. Let R be a commutative ring. An ideal I of R is said to be proper if $I \neq R$. Let I be a proper ideal of R. Then $Z_I(R) = \{r \in R \mid rs \in I \text{ for some } s \in R \setminus I\}$. The concept of 2-absorbing ideal, which is a generalization of prime ideal, was introduced by Badawi in [3] and studied in [2], [8], and [4]. Various generalizations of prime ideals are also studied in [1] and [5]. Recall that a proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is said to be a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ with $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

Note that a 2-absorbing ideal of a commutative ring R is a 2-absorbing primary ideal of R. However, these are different concepts. For instance, consider the ideal I=(12) of \mathbb{Z} . Since $2\cdot 2\cdot 3\in I$, but $2\cdot 2\notin I$ and $2\cdot 3\notin I$, I is not a 2-absorbing ideal of \mathbb{Z} . However, it is clear that I is a 2-absorbing primary ideal of \mathbb{Z} . It is also clear that every primary ideal of a ring R is a 2-absorbing primary ideal of R. However, the converse is not true. For example, (6) is a 2-absorbing primary ideal of \mathbb{Z} , but it is not a primary ideal of \mathbb{Z} .

Among many results in this paper, it is shown (Theorem 2.2) that the radical of a 2-absorbing primary ideal of a ring R is a 2-absorbing ideal of R. It is shown (Theorem 2.4) that if I_1 is a P_1 -primary ideal of R for some prime ideal

Received September 23, 2013; Revised January 14, 2014.

2010 Mathematics Subject Classification. Primary 13A15; Secondary 13F05, 13G05.

Key words and phrases. primary ideal, prime ideal, 2-absorbing ideal, n-absorbing ideal.

 P_1 of R and I_2 is a P_2 -primary ideal of R for some prime ideal P_2 of R, then I_1I_2 and $I_1 \cap I_2$ are 2-absorbing primary ideals of R. It is shown (Theorem 2.8) that if I is a proper ideal of a ring R such that \sqrt{I} is a prime ideal of R, then I is a 2-absorbing primary ideal of R. It is shown (Theorem 2.10) that every proper ideal of a divided ring is a 2-absorbing primary ideal. It is shown (Theorem 2.11) that a Noetherian domain R is a Dedekind domain if and only if a nonzero 2-absorbing primary ideal of R is either M^k for some maximal ideal M of R and some positive integer $k \geq 1$ or $M_1^k M_2^n$ for some distinct maximal ideals M_1, M_2 of R and some positive integers $k, n \geq 1$. It is shown (Theorem 2.19) that a proper ideal I of R is a 2-absorbing primary ideal if and only if whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \sqrt{I}$. Let $R = R_1 \times R_2$, where R_1, R_2 are commutative rings with $1 \neq 0$. It is shown (Theorem 2.23) that a proper ideal J of R is a 2-absorbing primary ideal of R if and only if either $J = I_1 \times R_2$ for some 2-absorbing primary ideal I_1 of R_1 or $J=R_1\times I_2$ for some 2-absorbing primary ideal I_2 of R_2 or $J = I_1 \times I_2$ for some primary ideal I_1 of R_1 and some primary ideal I_2 of R_2 .

2. Properties of 2-absorbing primary ideals

Definition 2.1. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

Theorem 2.2. If I is a 2-absorbing primary ideal of R, then \sqrt{I} is a 2-absorbing ideal of R.

Proof. Let $a, b, c \in R$ such that $abc \in \sqrt{I}$, $ac \notin \sqrt{I}$ and $bc \notin \sqrt{I}$. Since $abc \in \sqrt{I}$, there exists a positive integer n such that $(abc)^n = a^n b^n c^n \in I$. Since I is 2-absorbing primary and $ac \notin \sqrt{I}$ and $bc \notin \sqrt{I}$, we conclude that $a^n b^n = (ab)^n \in I$, and hence $ab \in \sqrt{I}$. Thus \sqrt{I} is a 2-absorbing ideal of R. \square

Theorem 2.3. Suppose that I is a 2-absorbing primary ideal of R. Then one of the following statements must hold.

- (1) $\sqrt{I} = P$ is a prime ideal,
- (2) $\sqrt{I} = P_1 \cap P_2$, where P_1 and P_2 are the only distinct prime ideals of R that are minimal over I.

Proof. Suppose that I is a 2-absorbing primary ideal of R. Then \sqrt{I} is a 2-absorbing ideal by Theorem 2.2. Since $\sqrt{\sqrt{I}} = \sqrt{I}$, the claim follows from [3, Theorem 2.4].

Theorem 2.4. Let R be a commutative ring with $1 \neq 0$. Suppose that I_1 is a P_1 -primary ideal of R for some prime ideal P_1 of R, and I_2 is a P_2 -primary ideal of R for some prime ideal P_2 of R. Then the following statements hold.

- (1) I_1I_2 is a 2-absorbing primary ideal of R.
- (2) $I_1 \cap I_2$ is a 2-absorbing primary ideal of R.

Proof. (1) Suppose that $abc \in I_1I_2$ for some $a,b,c \in R$, $ac \notin \sqrt{I_1I_2}$, and $bc \notin \sqrt{I_1I_2} = P_1 \cap P_2$. Then $a,b,c \notin \sqrt{I_1I_2} = P_1 \cap P_2$. Since $\sqrt{I_1I_2} = P_1 \cap P_2$, we conclude that $\sqrt{I_1I_2}$ is a 2-absorbing ideal of R. Since $\sqrt{I_1I_2}$ is a 2-absorbing ideal of R and $ac,bc \notin \sqrt{I_1I_2}$, we have $ab \in \sqrt{I_1I_2}$. We show that $ab \in I_1I_2$. Since $ab \in \sqrt{I_1I_2} \subseteq P_1$, we may assume that $a \in P_1$. Since $a \notin \sqrt{I_1I_2}$ and $ab \in \sqrt{I_1I_2} \subseteq P_2$, we conclude that $a \notin P_2$ and $b \in P_2$. Since $b \in P_2$ and $b \notin \sqrt{I_1I_2}$, we have $b \notin P_1$. If $a \in I_1$ and $b \in I_2$, then $ab \in I_1I_2$ and we are done. Thus assume that $a \notin I_1$. Since I_1 is a P_1 -primary ideal of P_1 and P_2 and P_3 is a contradiction. Thus P_3 is a P_4 -primary ideal of P_3 and P_4 and P_4 is a contradiction. Thus P_4 is a contradiction.

(2)(Similar to the proof in (1)). Let $H = I_1 \cap I_2$. Then $\sqrt{H} = P_1 \cap P_2$. Suppose that $abc \in H$ for some $a,b,c \in R$, $ac \notin \sqrt{H}$, and $bc \notin \sqrt{H}$. Then $a,b,c \notin \sqrt{H} = P_1 \cap P_2$. Since $\sqrt{H} = P_1 \cap P_2$ is a 2-absorbing ideal of R and $ac,bc \notin \sqrt{H}$, $ab \in \sqrt{H}$. We show that $ab \in H$. Since $ab \in \sqrt{H} \subseteq P_1$, we may assume that $a \in P_1$. Since $a \notin \sqrt{H}$ and $ab \in \sqrt{H} \subseteq P_2$, we conclude that $a \notin P_2$ and $b \in P_2$. Since $b \in P_2$ and $b \notin \sqrt{H}$, $b \notin P_1$. If $a \in I_1$ and $b \in I_2$, then $ab \in H$ and we are done. Thus assume that $a \notin I_1$. Since I_1 is a P_1 -primary ideal of R and $a \notin I_1$, we have $bc \in \sqrt{H}$, which is a contradiction. Thus $a \in I_1$. Similarly, assume that $b \notin I_2$. Since I_2 is a I_2 -primary ideal of I_2 and I_2 and I_2 is a I_3 -primary ideal of I_3 and I_4 and

In view of Theorem 2.4, we have the following result.

Corollary 2.5. Let R be a commutative ring with $1 \neq 0$, and let P_1, P_2 be prime ideals of R. If P_1^n is a P_1 -primary ideal of R for some positive integer $n \geq 1$ and P_2^m is a P_2 -primary ideal of R for some positive integer $m \geq 1$, then $P_1^n P_2^m$ and $P_1^n \cap P_2^m$ are 2-absorbing primary ideals of R. In particular, P_1P_2 is a 2-absorbing primary ideal of R.

In the following example, we show that if P_1, P_2 are prime ideals of a ring R and n, m are positive integers, then $P_1^n P_2^m$ need not be a 2-absorbing primary ideal of R.

Example 2.6. Let $R=\mathbb{Z}[Y]+3X\mathbb{Z}[Y,X]$. Then $P_1=YR$ and $P_2=3X\mathbb{Z}[Y,X]$ are prime ideals of R. Let $I=P_1P_2^2$. Then $3X^2\cdot Y\cdot 3=9X^2Y\in I$ and $3X^2\cdot Y=3X^2Y\not\in I$. Clearly $3X^2\cdot 3=9X^2\not\in \sqrt{I}=P_1\cap P_2$ and $Y\cdot 3=3Y\not\in \sqrt{I}=P_1\cap P_2$. Hence I is not a 2-absorbing primary ideal of R.

In the following example, we show that if $I \subset J$ such that I is a 2-absorbing primary ideal of R and $\sqrt{I} = \sqrt{J}$, then J need not be a 2-absorbing ideal of R.

Example 2.7. Let $R = \mathbb{Z}[X, Y, Z]$. Then $P_1 = XR$, $P_2 = YR$ are prime ideals of R, and $I = P_1^3 P_2^3$ is a 2-absorbing primary ideal of R by Corollary 2.5. Let

 $J=(XYZ,Y^3,X^3)R$. Then $I\subset J$ and $\sqrt{I}=\sqrt{J}=P_1\cap P_2=(XY)R$. We show that J is not a 2-absorbing ideal of R. For $X\cdot Y\cdot Z=XYZ\in J$, but $X\cdot Y=XY\not\in J,\ X\cdot Z=XZ\not\in \sqrt{J},$ and $Y\cdot Z=YZ\not\in \sqrt{J}.$ Thus J is not a 2-absorbing ideal of R.

Let I be a proper ideal of a ring R. It is known that if \sqrt{I} is a maximal ideal of R, then I is a primary ideal of R. In the following result, we show that if \sqrt{I} is a prime ideal of R, then I is a 2-absorbing primary ideal of R.

Theorem 2.8. Let I be an ideal of R. If \sqrt{I} is a prime ideal of R, then I is a 2-absorbing primary ideal of R. In particular, if P is a prime ideal of R, then P^n is a 2-absorbing primary ideal of R for every positive integer $n \geq 1$.

Proof. Suppose that $abc \in I$ and $ab \notin I$. Since $(ac)(bc) = abc^2 \in I \subseteq \sqrt{I}$ and \sqrt{I} is a prime ideal of R, we have $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Hence I is a 2-absorbing primary ideal of R.

In view of Theorem 2.2, Theorem 2.3, and Theorem 2.8, the following is an example of an ideal J of a ring R where \sqrt{J} is a 2-absorbing ideal of R, but J is not a 2-absorbing primary ideal of R.

Example 2.9. Let $R = \mathbb{Z}[X, Y, Z]$ and let $J = (XYZ, Y^3, X^3)R$. Then $\sqrt{J} = YR \cap XR$ is a 2-absorbing ideal of R, but J is not a 2-absorbing primary ideal of R by Example 2.7. Also, see Example 2.6.

Recall that a commutative ring R with $1 \neq 0$ is called a *divided ring* if for every prime ideal P of R, we have $P \subseteq xR$ for every $x \in R \setminus P$. Every chained ring is a divided ring (recall that a commutative ring R with $1 \neq 0$ is called a *chained ring*, if $x \mid y(inR)$ or $y \mid x(inR)$ for every $x, y \in R$). It is known that the prime ideals of a divided ring are linearly ordered; i.e., if P_1, P_2 are prime ideals of R, then $P_1 \subseteq P_2$ or $P_2 \subseteq P_1$. We have the following result.

Theorem 2.10. Let R be a commutative divided ring with $1 \neq 0$. Then every proper ideal of R is a 2-absorbing primary ideal of R. In particular, every proper ideal of a chained ring is a 2-absorbing primary ideal.

Proof. Let I be a proper ideal of R. Since the prime ideals of a divided ring are linearly ordered, we conclude that \sqrt{I} is a prime ideal of R. Hence I is a 2-absorbing primary ideal of R by Theorem 2.8.

Let R be an integral domain with $1 \neq 0$, and let K be the quotient field of R. If I is a nonzero proper ideal of R, then $I^{-1} = \{x \in K \mid xI \in R\}$. An integral domain R is said to be a *Dedekind domain* if $II^{-1} = R$ for every nonzero proper ideal I of R.

Theorem 2.11. Let R be a Noetherian integral domain with $1 \neq 0$ that is not a field. Then the following statements are equivalent.

(1) R is a Dedekind domain.

- (2) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I = M^n$ for some maximal ideal M of R and some positive integer $n \ge 1$ or $I = M_1^n M_2^m$ for some maximal ideals M_1, M_2 of R and some positive integers $n, m \ge 1$.
- (3) If I is a nonzero proper 2-absorbing primary ideal of R, then either $I = M^n$ for some maximal ideal M of R and some positive integer $n \ge 1$ or $I = M_1^n M_2^m$ for some maximal ideals M_1, M_2 of R and some positive integers $n, m \ge 1$.
- (4) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I = P^n$ for some prime ideal P of R and some positive integer $n \geq 1$ or $I = P_1^n P_2^m$ for some prime ideals P_1, P_2 of R and some positive integers $n, m \geq 1$.
- (5) If I is a nonzero proper 2-absorbing primary ideal of R, then either $I = P^n$ for some prime ideal P of R and some positive integer $n \ge 1$ or $I = P_1^n P_2^m$ for some prime ideals P_1, P_2 of R and some positive integers $n, m \ge 1$.

Proof. (1) \Rightarrow (2). Suppose that R is a Dedekind domain that is not a field. Then every nonzero prime ideal of R is maximal. Let I be a nonzero proper ideal of R. Then $I = M_1^{n_1} M_2^{n_2} \cdots M_k^{n_k}$ for some distinct maximal ideals M_1, \ldots, M_k of R and some positive integers $n_1, \ldots, n_k \geq 1$. Suppose that I is a 2-absorbing primary ideal of R. Since every nonzero prime ideal of R is maximal and \sqrt{I} is either a maximal ideal of R or $I_1 \cap I_2$ for some maximal ideals I_1, I_2 of R by Theorem 2.3, we conclude that either $I = M^n$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I = M_1^n M_2^m$ for some maximal ideals M_1, M_2 of R and some positive integers $n, m \geq 1$. Conversely, suppose that $I = M^n$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $n \geq 1$. Then $n \geq 1$ is a 2-absorbing primary ideal of $n \geq 1$ by Theorem 2.8 and Corollary 2.5.

- $(2) \Rightarrow (3)$. It is clear.
- $(2) \Rightarrow (4)$. It is clear.
- $(4) \Rightarrow (5)$. It is clear.
- $(3) \Rightarrow (5)$. It is clear.
- $(5) \Rightarrow (1)$. Let M be a maximal ideal of R. Since every ideal between M^2 and M is an M-primary ideal, and hence a 2-absorbing primary ideal of R, the hypothesis in (5) implies that there are no ideals properly between M^2 and M. Hence R is a Dedekind domain by [6, Theorem 39.2, p. 470].

Since every principal ideal domain is a Dedekind domain, we have the following result as a consequence of Theorem 2.11.

Corollary 2.12. Let R be a principal ideal domain and I be a nonzero proper ideal of R. Then I is a 2-absorbing primary ideal of R if and only if either $I = p^k R$ for some prime element p of R and $k \ge 1$ or $I = p_1^n p_2^m R$ for some

distinct prime elements p_1 , p_2 of R and some positive integers $n, m \ge 1$. In particular, if $R = \mathbb{Z}$ or R = F[X] for some field F, then a proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I = p^k R$ for some prime element p of R and some positive integer $k \ge 1$ or $I = p_1^n p_2^m R$ for some distinct prime elements p_1 , p_2 of R and some positive integers $n, m \ge 1$.

The following is an example of a unique factorization domain that contains a 2-absorbing primary ideal not of the form $P_1^n P_2^m$ for some prime ideals P_1, P_2 of R and some positive integers $n, m \ge 1$.

Example 2.13. Let R = K[X,Y], where K is a field. Consider the ideal $I = (X,Y^2)$ of R. Then I is a 2-absorbing primary ideal of R that is not of the form $P_1^n P_2^m$, where P_1 , P_2 are prime ideals of R and $n, m \ge 1$.

Let R be a commutative Noetherian ring with $1 \neq 0$. It is well-known that every proper ideal of R has a primary decomposition. Since every primary ideal is a 2-absorbing primary ideal, we conclude that every proper ideal of R has a 2-absorbing primary decomposition. However, decomposition of an ideal of R into 2-absorbing primary ideals need not be unique. We have the following example.

Example 2.14. In light of Corollary 2.12, consider the ideal (60) of \mathbb{Z} . Then

$$(60) = (3) \cap (4) \cap (5) = (3) \cap (20) = (4) \cap (15) = (5) \cap (12).$$

Hence (60) has four distinct 2-absorbing primary decompositions. The ideal (210) of \mathbb{Z} has exactly ten distinct 2-absorbing primary decompositions.

$$(210) = (2) \cap (3) \cap (5) \cap (7) = (6) \cap (5) \cap (7) = (10) \cap (3) \cap (7)$$

$$= (14) \cap (3) \cap (5) = (15) \cap (2) \cap (7) = (15) \cap (14) = (21) \cap (2) \cap (5)$$

$$= (21) \cap (10) = (35) \cap (2) \cap (3) = (35) \cap (6).$$

Definition 2.15. Let I be a 2-absorbing primary ideal of R. Then $P = \sqrt{I}$ is a 2-absorbing ideal by Theorem 2.2. We say that I is a P-2-absorbing primary ideal of R.

Theorem 2.16. Let $I_1, I_2, ..., I_n$ be P-2-absorbing primary ideals of R for some 2-absorbing ideal P of R. Then $I = \bigcap_{i=1}^n I_i$ is a P-2-absorbing primary ideal of R.

Proof. First observe that $\sqrt{I} = \bigcap_{i=1}^n \sqrt{I_i} = P$. Suppose that $abc \in I$ for some $a,b,c \in R$ and $ab \notin I$. Then $ab \notin I_i$ for some $1 \le i \le n$. Hence $bc \in \sqrt{I_i} = P$ or $ac \in \sqrt{I_i} = P$.

If I_1, I_2 are 2-absorbing primary ideals of a ring R, then $I_1 \cap I_2$ need not be a 2-absorbing primary ideal of R. We have the following example.

Example 2.17. Let $I_1 = 50\mathbb{Z}$ and $I_2 = 75\mathbb{Z}$. Then I_1, I_2 are 2-absorbing primary ideals of \mathbb{Z} by Corollary 2.12. Since $\sqrt{I_1 \cap I_2} = 2\mathbb{Z} \cap 3\mathbb{Z} \cap 5\mathbb{Z} = 30\mathbb{Z}$, $I_1 \cap I_2$ is not a 2-absorbing primary ideal of \mathbb{Z} by Theorem 2.3.

In the following result, we show that a proper ideal I of a ring R is a 2-absorbing primary ideal of R if and only if whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_1I_3 \subseteq \sqrt{I}$. But first we have the following lemma.

Lemma 2.18. Let I be a 2-absorbing primary ideal of a ring R and suppose that $abJ \subseteq I$ for some elements $a, b \in R$ and some ideal J of R. If $ab \not\in I$, then $aJ \subseteq \sqrt{I}$ or $bJ \subseteq \sqrt{I}$.

Proof. Suppose that $aJ \nsubseteq \sqrt{I}$ and $bJ \nsubseteq \sqrt{I}$. Then $aj_1 \notin \sqrt{I}$ and $bj_2 \notin \sqrt{I}$ for some $j_1, j_2 \in J$. Since $abj_1 \in I$ and $ab \notin I$ and $aj_1 \notin \sqrt{I}$, we have $bj_1 \in \sqrt{I}$. Since $abj_2 \in I$ and $ab \notin I$ and $bj_2 \notin \sqrt{I}$, we have $aj_2 \in \sqrt{I}$. Now, since $ab(j_1 + j_2) \in I$ and $ab \notin I$, we have $a(j_1 + j_2) \in \sqrt{I}$ or $b(j_1 + j_2) \in \sqrt{I}$. Suppose that $a(j_1 + j_2) = aj_1 + aj_2 \in \sqrt{I}$. Since $aj_2 \in \sqrt{I}$, we have $aj_1 \in \sqrt{I}$, a contradiction. Suppose that $b(j_1 + j_2) = bj_1 + bj_2 \in \sqrt{I}$. Since $bj_1 \in \sqrt{I}$, we have $bj_2 \in \sqrt{I}$, a contradiction again. Thus $aJ \subseteq \sqrt{I}$ or $bJ \subseteq \sqrt{I}$.

Theorem 2.19. Let I be a proper ideal of R. Then I is a 2-absorbing primary ideal if and only if whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1 , I_2 , I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_1I_3 \subseteq \sqrt{I}$.

Proof. Suppose that whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1 , I_2 , I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_1I_3 \subseteq \sqrt{I}$. Then clearly I is a 2-absorbing primary ideal of R by definition.

Conversely, suppose that I is a 2-absorbing primary ideal of R and $I_1I_2I_3\subseteq I$ for some ideals $I_1,\ I_2,\ I_3$ of R, such that $I_1I_2\not\subseteq I$. We show that $I_1I_3\subseteq \sqrt{I}$ or $I_2I_3\subseteq \sqrt{I}$. Suppose that neither $I_1I_3\subseteq \sqrt{I}$ nor $I_2I_3\subseteq \sqrt{I}$. Then there are $q_1\in I_1$ and $q_2\in I_2$ such that neither $q_1I_3\subseteq \sqrt{I}$ nor $q_2I_3\subseteq \sqrt{I}$. Since $q_1q_2I_3\subseteq I$ and neither $q_1I_3\subseteq \sqrt{I}$ nor $q_2I_3\subseteq \sqrt{I}$, we have $q_1q_2\in I$ by Lemma 2.18.

Since $I_1I_2 \not\subseteq I$, we have $ab \not\in I$ for some $a \in I_1, b \in I_2$. Since $abI_3 \subseteq I$ and $ab \not\in I$, we have $aI_3 \subseteq \sqrt{I}$ or $bI_3 \subseteq \sqrt{I}$ by Lemma 2.18. We consider three cases. Case one: Suppose that $aI_3 \subseteq \sqrt{I}$, but $bI_3 \not\subseteq \sqrt{I}$. Since $q_1bI_3 \subseteq I$ and neither $bI_3 \subseteq \sqrt{I}$ nor $q_1I_3 \subseteq \sqrt{I}$, we conclude that $q_1b \in I$ by Lemma 2.18. Since $(a+q_1)bI_3 \subseteq I$ and $aI_3 \subseteq \sqrt{I}$, but $q_1I_3 \not\subseteq \sqrt{I}$, we conclude that $(a+q_1)I_3 \not\subseteq \sqrt{I}$. Since neither $bI_3 \subseteq \sqrt{I}$ nor $(a+q_1)I_3 \subseteq \sqrt{I}$, we conclude that $(a+q_1)b \in I$ by Lemma 2.18. Since $(a+q_1)b=ab+q_1b \in I$ and $q_1b \in I$, we conclude that $ab \in I$, a contradiction. Case two: Suppose that $bI_3 \subseteq \sqrt{I}$, but $aI_3 \not\subseteq \sqrt{I}$. Since $aq_2I_3 \subseteq I$ and neither $aI_3 \subseteq \sqrt{I}$ nor $q_2I_3 \subseteq \sqrt{I}$, we conclude that $aq_2 \in I$. Since $a(b+q_2)I_3 \subseteq I$ and $bI_3 \subseteq \sqrt{I}$ nor $(b+q_2)I_3 \subseteq \sqrt{I}$, we conclude that $(b+q_2)I_3 \not\subseteq \sqrt{I}$. Since neither $aI_3 \subseteq \sqrt{I}$ nor $(b+q_2)I_3 \subseteq \sqrt{I}$, we conclude that $a(b+q_2) \in I$ by Lemma 2.18. Since $a(b+q_2) = ab+aq_2 \in I$ and $aq_2 \in I$, we conclude that $ab \in I$, a contradiction. Case three: Suppose that $aI_3 \subseteq \sqrt{I}$ and $bI_3 \subseteq \sqrt{I}$. Since $bI_3 \subseteq \sqrt{I}$ and $q_2I_3 \not\subseteq \sqrt{I}$, we conclude that $ab \in I$, a contradiction. Case three: Suppose that $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ nor $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ nor $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ nor $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ nor $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$ and $aI_3 \subseteq \sqrt{I}$. Since $aI_3 \subseteq I$ and $aI_3 \subseteq$

 $(b+q_2)I_3\subseteq \sqrt{I}, \text{ we conclude that } q_1(b+q_2)=q_1b+q_1q_2\in I \text{ by Lemma 2.18.}$ Since $q_1q_2\in I$ and $q_1b+q_1q_2\in I$, we conclude that $bq_1\in I$. Since $aI_3\subseteq \sqrt{I}$ and $q_1I_3\not\subseteq \sqrt{I}$, we conclude that $(a+q_1)I_3\not\subseteq \sqrt{I}$. Since $(a+q_1)q_2I_3\subseteq I$ and neither $q_2I_3\subseteq \sqrt{I}$ nor $(a+q_1)I_3\subseteq \sqrt{I}$, we conclude that $(a+q_1)q_2=aq_2+q_1q_2\in I$ by Lemma 2.18. Since $q_1q_2\in I$ and $aq_2+q_1q_2\in I$, we conclude that $aq_2\in I$. Now, since $(a+q_1)(b+q_2)I_3\subseteq I$ and neither $(a+q_1)I_3\subseteq \sqrt{I}$ nor $(b+q_2)I_3\subseteq \sqrt{I}$, we conclude that $(a+q_1)(b+q_2)=ab+aq_2+bq_1+q_1q_2\in I$ by Lemma 2.18. Since $aq_2,bq_1,q_1q_2\in I$, we have $aq_2+bq_1+q_1q_2\in I$. Since $ab+aq_2+bq_1+q_1q_2\in I$ and $aq_2+bq_1+q_1q_2\in I$, we conclude that $ab\in I$, a contradiction. Hence $I_1I_3\subseteq \sqrt{I}$ or $I_2I_3\subseteq \sqrt{I}$.

Theorem 2.20. Let $f: R \to R'$ be a homomorphism of commutative rings. Then the following statements hold.

- (1) If I' is a 2-absorbing primary ideal of R', then $f^{-1}(I')$ is a 2-absorbing primary ideal of R.
- (2) If f is an epimorphism and I is a 2-absorbing primary ideal of R containing Ker(f), then f(I) is a 2-absorbing primary ideal of R'.

Proof. (1) Let $a, b, c \in R$ such that $abc \in f^{-1}(I')$. Then $f(abc) = f(a)f(b)f(c) \in I'$. Hence we have $f(a)f(b) \in I'$ or $f(b)f(c) \in \sqrt{I'}$ or $f(a)f(c) \in \sqrt{I'}$, and thus $ab \in f^{-1}(I')$ or $bc \in f^{-1}(\sqrt{I'})$ or $ac \in f^{-1}(\sqrt{I'})$. By using the equality $f^{-1}(\sqrt{I'}) = \sqrt{f^{-1}(I')}$, we conclude that $f^{-1}(I')$ is a 2-absorbing primary ideal of R.

(2) Let $a',b',c' \in R'$ and $a'b'c' \in f(I)$. Then there exist $a,b,c \in R$ such that $f(a) = a', \ f(b) = b', \ f(c) = c', \ \text{and} \ f(abc) = a'b'c' \in f(I)$. Since $Ker \ f \subseteq I$, we have $abc \in I$. It implies that $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$. This means that $a'b' \in f(I)$ or $a'c' \in f(\sqrt{I}) \subseteq \sqrt{f(I)}$ or $b'c' \in f(\sqrt{I}) \subseteq \sqrt{f(I)}$. Thus f(I) is a 2-absorbing primary ideal of R'.

Corollary 2.21. Let R be a commutative ring with $1 \neq 0$. Suppose that I, J are distinct proper ideals of R. If $J \subseteq I$ and I is a 2-absorbing primary ideal of R, then I/J is a 2-absorbing primary ideal of R/J.

Proof. The proof is clear by Theorem 2.20(2).

Theorem 2.22. Let R be a commutative ring with $1 \neq 0$, S be a multiplicatively closed subset of R, and I be a proper ideal of R. Then the following statements hold.

- (1) If I is a 2-absorbing primary ideal of R such that $I \cap S = \emptyset$, then $S^{-1}I$ is a 2-absorbing primary ideal of $S^{-1}R$.
- (2) If $S^{-1}I$ is a 2-absorbing primary ideal of $S^{-1}R$ and $S \cap Z_I(R) = \emptyset$, then I is a 2-absorbing primary ideal of R.

Proof. (1) Let $a, b, c \in R$, $s, t, k \in S$ such that $\frac{a}{s} \frac{b}{t} \frac{c}{k} \in S^{-1}I$. Then there exists $u \in S$ such that $uabc \in I$. Since I is a 2-absorbing primary ideal, we get

 $b^n c^n \in I$, and so $bc \in \sqrt{I}$. If $\frac{a}{1} \stackrel{c}{=} \in \sqrt{S^{-1}I}$, then similarly we obtain $ac \in \sqrt{I}$, and it completes the proof.

Theorem 2.23. Let $R = R_1 \times R_2$, where R_1 and R_2 are commutative rings with $1 \neq 0$. Let J be a proper ideal of R. Then the following statements are equivalent.

- (1) J is a 2-absorbing primary ideal of R.
- (2) Either $J = I_1 \times R_2$ for some 2-absorbing primary ideal I_1 of R_1 or $J = R_1 \times I_2$ for some 2-absorbing primary ideal I_2 of R_2 or $J = I_1 \times I_2$ for some primary ideal I_1 of R_1 and some primary ideal I_2 of R_2 .

Proof. (1) \Rightarrow (2). Assume that J is a 2-absorbing primary ideal of R. Then $J = I_1 \times I_2$ for some ideal I_1 of R_1 and some ideal I_2 of R_2 . Suppose that $I_2 = R_2$. Since J is a proper ideal of R, $I_1 \neq R_1$. Let $R' = \frac{R}{\{0\} \times R_2}$. Then $J' = \frac{J}{\{0\} \times R_2}$ is a 2-absorbing primary ideal of R' by Corollary 2.21. Since R' is ring-isomorphic to R_1 and $I_1 \cong J'$, I_1 is a 2-absorbing primary ideal of R_1 . Suppose that $I_1 = R_1$. Since J is a proper ideal of R, $I_2 \neq R_2$. By a similar argument as in the previous case, I_2 is a 2-absorbing primary ideal of R_2 . Hence assume that $I_1 \neq R_1$ and $I_2 \neq R_2$. Then $\sqrt{J} = \sqrt{I_1} \times \sqrt{I_2}$. Suppose that I_1 is not a primary ideal of R_1 . Then there are $a, b \in R_1$ such that $ab \in I_1$ but neither $a \in I_1$ nor $b \in \sqrt{I_1}$. Let x = (a, 1), y = (1, 0), and c = (b, 1). Then $xyc = (ab, 0) \in J$ but neither $xy = (a, 0) \in J$ nor $xc = (ab, 1) \in \sqrt{J}$ nor $yc = (b,0) \in \sqrt{J}$, which is a contradiction. Thus I_1 is a primary ideal of R_1 . Suppose that I_2 is not a primary ideal of R_2 . Then there are $d, e \in R_2$ such that $de \in I_2$ but neither $d \in I_2$ nor $e \in \sqrt{I_2}$. Let x = (1, d), y = (0, 1), and c = (1, e). Then $xyc = (0, de) \in J$ but neither $xy = (0, d) \in J$ nor $xc = (1, de) \in \sqrt{J}$ nor $yc = (0, e) \in \sqrt{J}$, which is a contradiction. Thus I_2 is a primary ideal of R_2 .

(2) \Rightarrow (1). If $J = I_1 \times R_2$ for some 2-absorbing primary ideal I_1 of R_1 or $J = R_1 \times I_2$ for some 2-absorbing primary ideal I_2 of R_2 , then it is clear that J is a 2-absorbing primary ideal of R. Hence assume that $J = I_1 \times I_2$ for some primary ideal I_1 of R_1 and some primary ideal I_2 of R_2 . Then $I'_1 = I_1 \times R_2$ and $I_2' = R_1 \times I_2$ are primary ideals of R. Hence $I_1' \cap I_2' = I_1 \times I_2 = J$ is a 2-absorbing primary ideal of R by Theorem 2.4.

Theorem 2.24. Let $R = R_1 \times R_2 \times \cdots \times R_n$, where $2 \leq n < \infty$, and R_1, R_2, \ldots, R_n are commutative rings with $1 \neq 0$. Let J be a proper ideal of R. Then the following statements are equivalent.

- (1) J is a 2-absorbing primary ideal of R.
- (2) Either $J = \times_{t=1}^n I_t$ such that for some $k \in \{1, 2, ..., n\}$, I_k is a 2-absorbing primary ideal of R_k , and $I_t = R_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k\}$ or $J = \times_{t=1}^n I_t$ such that for some $k, m \in \{1, 2, ..., n\}$, I_k is a primary ideal of R_k , I_m is a primary ideal of R_m , and $I_t = R_t$ for every $t \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof. We use induction on n. Assume that n=2. Then the result is valid by Theorem 2.23. Thus let $3 \le n < \infty$ and assume that the result is valid when $K = R_1 \times \cdots \times R_{n-1}$. We prove the result when $R = K \times R_n$. By Theorem 2.23, J is a 2-absorbing primary ideal of R if and only if either $J = L \times R_n$ for some 2-absorbing primary ideal L of K or $J = K \times L_n$ for some 2-absorbing primary ideal L of R_n or $J = L \times L_n$ for some primary ideal L of K and some primary ideal L_n of R_n . Observe that a proper ideal Q of K is a primary ideal of K if and only if $Q = \times_{t=1}^{n-1} I_t$ such that for some $k \in \{1, 2, \ldots, n-1\}$, I_k is a primary ideal of R_k , and $I_t = R_t$ for every $t \in \{1, 2, \ldots, n-1\} \setminus \{k\}$. Thus the claim is now verified.

Acknowledgement. We would like to thank the referee for his/her great effort in proofreading the manuscript.

References

- D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686–696.
- [2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672.
- [3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417–429.
- [4] A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), no. 1, 83-91.
- [5] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268–1279.
- [6] R. Gilmer, Multiplicative Ideal Theory, Queen Papers Pure Appl. Math. 90, Queen's University, Kingston, 1992.
- $[7]\,$ J. Huckaba, Rings~with~Zero-Divisors, New York/Basil, Marcel Dekker, 1988.
- [8] S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012), no. 5-8, 265-271.

AYMAN BADAWI
DEPARTMENT OF MATHEMATICS & STATISTICS
AMERICAN UNIVERSITY OF SHARJAH
P.O. BOX 26666, SHARJAH, UNITED ARAB EMIRATES
E-mail address: abadawi@aus.edu

UNSAL TEKIR
DEPARTMENT OF MATHEMATICS
MARMARA UNIVERSITY
ISTANBUL, TURKEY

 $E ext{-}mail\ address: utekir@marmara.edu.tr}$

ECE YETKIN
DEPARTMENT OF MATHEMATICS
MARMARA UNIVERSITY
ISTANBUL, TURKEY
E-mail address: ece.yetkin@marmara.edu.tr