ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

Ayman Badawi, Unsal Tekir, and Ece Yetkin

Abstract

Let R be a commutative ring with $1 \neq 0$. In this paper, we introduce the concept of 2 -absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2 -absorbing primary ideals are given.

1. Introduction

We assume throughout this paper that all rings are commutative with $1 \neq 0$. Let R be a commutative ring. An ideal I of R is said to be proper if $I \neq R$. Let I be a proper ideal of R. Then $Z_{I}(R)=\{r \in R \mid r s \in I$ for some $s \in R \backslash I\}$. The concept of 2-absorbing ideal, which is a generalization of prime ideal, was introduced by Badawi in [3] and studied in [2], [8], and [4]. Various generalizations of prime ideals are also studied in [1] and [5]. Recall that a proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is said to be a 2 -absorbing primary ideal of R if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$.

Note that a 2-absorbing ideal of a commutative ring R is a 2-absorbing primary ideal of R. However, these are different concepts. For instance, consider the ideal $I=(12)$ of \mathbb{Z}. Since $2 \cdot 2 \cdot 3 \in I$, but $2 \cdot 2 \notin I$ and $2 \cdot 3 \notin I, I$ is not a 2 -absorbing ideal of \mathbb{Z}. However, it is clear that I is a 2 -absorbing primary ideal of \mathbb{Z}. It is also clear that every primary ideal of a ring R is a 2-absorbing primary ideal of R. However, the converse is not true. For example, (6) is a 2-absorbing primary ideal of \mathbb{Z}, but it is not a primary ideal of \mathbb{Z}.

Among many results in this paper, it is shown (Theorem 2.2) that the radical of a 2-absorbing primary ideal of a ring R is a 2 -absorbing ideal of R. It is shown (Theorem 2.4) that if I_{1} is a P_{1}-primary ideal of R for some prime ideal

[^0]P_{1} of R and I_{2} is a P_{2}-primary ideal of R for some prime ideal P_{2} of R, then $I_{1} I_{2}$ and $I_{1} \cap I_{2}$ are 2-absorbing primary ideals of R. It is shown (Theorem 2.8) that if I is a proper ideal of a ring R such that \sqrt{I} is a prime ideal of R, then I is a 2 -absorbing primary ideal of R. It is shown (Theorem 2.10) that every proper ideal of a divided ring is a 2 -absorbing primary ideal. It is shown (Theorem 2.11) that a Noetherian domain R is a Dedekind domain if and only if a nonzero 2-absorbing primary ideal of R is either M^{k} for some maximal ideal M of R and some positive integer $k \geq 1$ or $M_{1}^{k} M_{2}^{n}$ for some distinct maximal ideals M_{1}, M_{2} of R and some positive integers $k, n \geq 1$. It is shown (Theorem 2.19) that a proper ideal I of R is a 2 -absorbing primary ideal if and only if whenever $I_{1} I_{2} I_{3} \subseteq I$ for some ideals I_{1}, I_{2}, I_{3} of R, then $I_{1} I_{2} \subseteq I$ or $I_{1} I_{3} \subseteq \sqrt{I}$ or $I_{2} I_{3} \subseteq \sqrt{I}$. Let $R=R_{1} \times R_{2}$, where R_{1}, R_{2} are commutative rings with $1 \neq 0$. It is shown (Theorem 2.23) that a proper ideal J of R is a 2-absorbing primary ideal of R if and only if either $J=I_{1} \times R_{2}$ for some 2-absorbing primary ideal I_{1} of R_{1} or $J=R_{1} \times I_{2}$ for some 2-absorbing primary ideal I_{2} of R_{2} or $J=I_{1} \times I_{2}$ for some primary ideal I_{1} of R_{1} and some primary ideal I_{2} of R_{2}.

2. Properties of $\mathbf{2}$-absorbing primary ideals

Definition 2.1. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$.

Theorem 2.2. If I is a 2-absorbing primary ideal of R, then \sqrt{I} is a 2absorbing ideal of R.

Proof. Let $a, b, c \in R$ such that $a b c \in \sqrt{I}, a c \notin \sqrt{I}$ and $b c \notin \sqrt{I}$. Since $a b c \in \sqrt{I}$, there exists a positive integer n such that $(a b c)^{n}=a^{n} b^{n} c^{n} \in I$. Since I is 2-absorbing primary and $a c \notin \sqrt{I}$ and $b c \notin \sqrt{I}$, we conclude that $a^{n} b^{n}=(a b)^{n} \in I$, and hence $a b \in \sqrt{I}$. Thus \sqrt{I} is a 2 -absorbing ideal of R.

Theorem 2.3. Suppose that I is a 2-absorbing primary ideal of R. Then one of the following statements must hold.
(1) $\sqrt{I}=P$ is a prime ideal,
(2) $\sqrt{I}=P_{1} \cap P_{2}$, where P_{1} and P_{2} are the only distinct prime ideals of R that are minimal over I.
Proof. Suppose that I is a 2-absorbing primary ideal of R. Then \sqrt{I} is a 2 absorbing ideal by Theorem 2.2. Since $\sqrt{\sqrt{I}}=\sqrt{I}$, the claim follows from $[3$, Theorem 2.4].
Theorem 2.4. Let R be a commutative ring with $1 \neq 0$. Suppose that I_{1} is a P_{1}-primary ideal of R for some prime ideal P_{1} of R, and I_{2} is a P_{2}-primary ideal of R for some prime ideal P_{2} of R. Then the following statements hold.
(1) $I_{1} I_{2}$ is a 2-absorbing primary ideal of R.
(2) $I_{1} \cap I_{2}$ is a 2-absorbing primary ideal of R.

Proof. (1) Suppose that $a b c \in I_{1} I_{2}$ for some $a, b, c \in R$, $a c \notin \sqrt{I_{1} I_{2}}$, and $b c \notin \sqrt{I_{1} I_{2}}=P_{1} \cap P_{2}$. Then $a, b, c \notin \sqrt{I_{1} I_{2}}=P_{1} \cap P_{2}$. Since $\sqrt{I_{1} I_{2}}=P_{1} \cap P_{2}$, we conclude that $\sqrt{I_{1} I_{2}}$ is a 2-absorbing ideal of R. Since $\sqrt{I_{1} I_{2}}$ is a 2-absorbing ideal of R and $a c, b c \notin \sqrt{I_{1} I_{2}}$, we have $a b \in \sqrt{I_{1} I_{2}}$. We show that $a b \in I_{1} I_{2}$. Since $a b \in \sqrt{I_{1} I_{2}} \subseteq P_{1}$, we may assume that $a \in P_{1}$. Since $a \notin \sqrt{I_{1} I_{2}}$ and $a b \in \sqrt{I_{1} I_{2}} \subseteq P_{2}$, we conclude that $a \notin P_{2}$ and $b \in P_{2}$. Since $b \in P_{2}$ and $b \notin \sqrt{I_{1} I_{2}}$, we have $b \notin P_{1}$. If $a \in I_{1}$ and $b \in I_{2}$, then $a b \in I_{1} I_{2}$ and we are done. Thus assume that $a \notin I_{1}$. Since I_{1} is a P_{1}-primary ideal of R and $a \notin I_{1}$, we have $b c \in P_{1}$. Since $b \in P_{2}$ and $b c \in P_{1}$, we have $b c \in \sqrt{I_{1} I_{2}}$, which is a contradiction. Thus $a \in I_{1}$. Similarly, assume that $b \notin I_{2}$. Since I_{2} is a P_{2}-primary ideal of R and $b \notin I_{2}$, we have $a c \in P_{2}$. Since $a c \in P_{2}$ and $a \in P_{1}$, we have $a c \in \sqrt{I_{1} I_{2}}$, which is a contradiction. Thus $b \in I_{2}$. Hence $a b \in I_{1} I_{2}$.
(2)(Similar to the proof in (1)). Let $H=I_{1} \cap I_{2}$. Then $\sqrt{H}=P_{1} \cap P_{2}$. Suppose that $a b c \in H$ for some $a, b, c \in R, a c \notin \sqrt{H}$, and $b c \notin \sqrt{H}$. Then $a, b, c \notin \sqrt{H}=P_{1} \cap P_{2}$. Since $\sqrt{H}=P_{1} \cap P_{2}$ is a 2-absorbing ideal of R and $a c, b c \notin \sqrt{H}, a b \in \sqrt{H}$. We show that $a b \in H$. Since $a b \in \sqrt{H} \subseteq P_{1}$, we may assume that $a \in P_{1}$. Since $a \notin \sqrt{H}$ and $a b \in \sqrt{H} \subseteq P_{2}$, we conclude that $a \notin P_{2}$ and $b \in P_{2}$. Since $b \in P_{2}$ and $b \notin \sqrt{H}, b \notin P_{1}$. If $a \in I_{1}$ and $b \in I_{2}$, then $a b \in H$ and we are done. Thus assume that $a \notin I_{1}$. Since I_{1} is a P_{1}-primary ideal of R and $a \notin I_{1}$, we have $b c \in P_{1}$. Since $b \in P_{2}$ and $b c \in P_{1}$, we have $b c \in \sqrt{H}$, which is a contradiction. Thus $a \in I_{1}$. Similarly, assume that $b \notin I_{2}$. Since I_{2} is a P_{2}-primary ideal of R and $b \notin I_{2}$, we have $a c \in P_{2}$. Since $a c \in P_{2}$ and $a \in P_{1}$, we have $a c \in \sqrt{H}$, which is a contradiction. Thus $b \in I_{2}$. Hence $a b \in H$.

In view of Theorem 2.4, we have the following result.
Corollary 2.5. Let R be a commutative ring with $1 \neq 0$, and let P_{1}, P_{2} be prime ideals of R. If P_{1}^{n} is a P_{1}-primary ideal of R for some positive integer $n \geq 1$ and P_{2}^{m} is a P_{2}-primary ideal of R for some positive integer $m \geq 1$, then $P_{1}^{n} P_{2}^{m}$ and $P_{1}^{n} \cap P_{2}^{m}$ are 2-absorbing primary ideals of R. In particular, $P_{1} P_{2}$ is a 2-absorbing primary ideal of R.

In the following example, we show that if P_{1}, P_{2} are prime ideals of a ring R and n, m are positive integers, then $P_{1}^{n} P_{2}^{m}$ need not be a 2 -absorbing primary ideal of R.

Example 2.6. Let $R=\mathbb{Z}[Y]+3 X \mathbb{Z}[Y, X]$. Then $P_{1}=Y R$ and $P_{2}=$ $3 X \mathbb{Z}[Y, X]$ are prime ideals of R. Let $I=P_{1} P_{2}^{2}$. Then $3 X^{2} \cdot Y \cdot 3=9 X^{2} Y \in I$ and $3 X^{2} \cdot Y=3 X^{2} Y \notin I$. Clearly $3 X^{2} \cdot 3=9 X^{2} \notin \sqrt{I}=P_{1} \cap P_{2}$ and $Y \cdot 3=3 Y \notin \sqrt{I}=P_{1} \cap P_{2}$. Hence I is not a 2-absorbing primary ideal of R.

In the following example, we show that if $I \subset J$ such that I is a 2-absorbing primary ideal of R and $\sqrt{I}=\sqrt{J}$, then J need not be a 2-absorbing ideal of R.
Example 2.7. Let $R=\mathbb{Z}[X, Y, Z]$. Then $P_{1}=X R, P_{2}=Y R$ are prime ideals of R, and $I=P_{1}^{3} P_{2}^{3}$ is a 2-absorbing primary ideal of R by Corollary 2.5. Let
$J=\left(X Y Z, Y^{3}, X^{3}\right) R$. Then $I \subset J$ and $\sqrt{I}=\sqrt{J}=P_{1} \cap P_{2}=(X Y) R$. We show that J is not a 2 -absorbing ideal of R. For $X \cdot Y \cdot Z=X Y Z \in J$, but $X \cdot Y=X Y \notin J, X \cdot Z=X Z \notin \sqrt{J}$, and $Y \cdot Z=Y Z \notin \sqrt{J}$. Thus J is not a 2-absorbing ideal of R.

Let I be a proper ideal of a ring R. It is known that if \sqrt{I} is a maximal ideal of R, then I is a primary ideal of R. In the following result, we show that if \sqrt{I} is a prime ideal of R, then I is a 2 -absorbing primary ideal of R.

Theorem 2.8. Let I be an ideal of R. If \sqrt{I} is a prime ideal of R, then I is a 2 -absorbing primary ideal of R. In particular, if P is a prime ideal of R, then P^{n} is a 2-absorbing primary ideal of R for every positive integer $n \geq 1$.

Proof. Suppose that $a b c \in I$ and $a b \notin I$. Since $(a c)(b c)=a b c^{2} \in I \subseteq \sqrt{I}$ and \sqrt{I} is a prime ideal of R, we have $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. Hence I is a 2-absorbing primary ideal of R.

In view of Theorem 2.2, Theorem 2.3, and Theorem 2.8, the following is an example of an ideal J of a ring R where \sqrt{J} is a 2-absorbing ideal of R, but J is not a 2 -absorbing primary ideal of R.
Example 2.9. Let $R=\mathbb{Z}[X, Y, Z]$ and let $J=\left(X Y Z, Y^{3}, X^{3}\right) R$. Then $\sqrt{J}=$ $Y R \cap X R$ is a 2-absorbing ideal of R, but J is not a 2-absorbing primary ideal of R by Example 2.7. Also, see Example 2.6.

Recall that a commutative ring R with $1 \neq 0$ is called a divided ring if for every prime ideal P of R, we have $P \subseteq x R$ for every $x \in R \backslash P$. Every chained ring is a divided ring (recall that a commutative ring R with $1 \neq 0$ is called a chained ring, if $x \mid y(i n R)$ or $y \mid x(i n R)$ for every $x, y \in R)$. It is known that the prime ideals of a divided ring are linearly ordered; i.e., if P_{1}, P_{2} are prime ideals of R, then $P_{1} \subseteq P_{2}$ or $P_{2} \subseteq P_{1}$. We have the following result.

Theorem 2.10. Let R be a commutative divided ring with $1 \neq 0$. Then every proper ideal of R is a 2-absorbing primary ideal of R. In particular, every proper ideal of a chained ring is a 2 -absorbing primary ideal.

Proof. Let I be a proper ideal of R. Since the prime ideals of a divided ring are linearly ordered, we conclude that \sqrt{I} is a prime ideal of R. Hence I is a 2 -absorbing primary ideal of R by Theorem 2.8.

Let R be an integral domain with $1 \neq 0$, and let K be the quotient field of R. If I is a nonzero proper ideal of R, then $I^{-1}=\{x \in K \mid x I \in R\}$. An integral domain R is said to be a Dedekind domain if $I I^{-1}=R$ for every nonzero proper ideal I of R.
Theorem 2.11. Let R be a Noetherian integral domain with $1 \neq 0$ that is not a field. Then the following statements are equivalent.
(1) R is a Dedekind domain.
(2) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I=M^{n}$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I=M_{1}^{n} M_{2}^{m}$ for some maximal ideals M_{1}, M_{2} of R and some positive integers $n, m \geq 1$.
(3) If I is a nonzero proper 2-absorbing primary ideal of R, then either $I=M^{n}$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I=M_{1}^{n} M_{2}^{m}$ for some maximal ideals M_{1}, M_{2} of R and some positive integers $n, m \geq 1$.
(4) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I=P^{n}$ for some prime ideal P of R and some positive integer $n \geq 1$ or $I=P_{1}^{n} P_{2}^{m}$ for some prime ideals P_{1}, P_{2} of R and some positive integers $n, m \geq 1$.
(5) If I is a nonzero proper 2-absorbing primary ideal of R, then either $I=P^{n}$ for some prime ideal P of R and some positive integer $n \geq 1$ or $I=P_{1}^{n} P_{2}^{m}$ for some prime ideals P_{1}, P_{2} of R and some positive integers $n, m \geq 1$.

Proof. (1) \Rightarrow (2). Suppose that R is a Dedekind domain that is not a field. Then every nonzero prime ideal of R is maximal. Let I be a nonzero proper ideal of R. Then $I=M_{1}^{n_{1}} M_{2}^{n_{2}} \cdots M_{k}^{n_{k}}$ for some distinct maximal ideals M_{1}, \ldots, M_{k} of R and some positive integers $n_{1}, \ldots, n_{k} \geq 1$. Suppose that I is a 2 -absorbing primary ideal of R. Since every nonzero prime ideal of R is maximal and \sqrt{I} is either a maximal ideal of R or $I_{1} \cap I_{2}$ for some maximal ideals I_{1}, I_{2} of R by Theorem 2.3, we conclude that either $I=M^{n}$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I=M_{1}^{n} M_{2}^{m}$ for some maximal ideals M_{1}, M_{2} of R and some positive integers $n, m \geq 1$. Conversely, suppose that $I=M^{n}$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I=M_{1}^{n} M_{2}^{m}$ for some maximal ideals M_{1}, M_{2} of R and some positive integers $n, m \geq 1$. Then I is a 2-absorbing primary ideal of R by Theorem 2.8 and Corollary 2.5.
$(2) \Rightarrow(3)$. It is clear.
$(2) \Rightarrow(4)$. It is clear.
$(4) \Rightarrow(5)$. It is clear.
$(3) \Rightarrow(5)$. It is clear.
$(5) \Rightarrow(1)$. Let M be a maximal ideal of R . Since every ideal between M^{2} and M is an M-primary ideal, and hence a 2 -absorbing primary ideal of R , the hypothesis in (5) implies that there are no ideals properly between M^{2} and M. Hence R is a Dedekind domain by [6, Theorem 39.2, p. 470].

Since every principal ideal domain is a Dedekind domain, we have the following result as a consequence of Theorem 2.11.

Corollary 2.12. Let R be a principal ideal domain and I be a nonzero proper ideal of R. Then I is a 2-absorbing primary ideal of R if and only if either $I=p^{k} R$ for some prime element p of R and $k \geq 1$ or $I=p_{1}^{n} p_{2}^{m} R$ for some
distinct prime elements p_{1}, p_{2} of R and some positive integers $n, m \geq 1$. In particular, if $R=\mathbb{Z}$ or $R=F[X]$ for some field F, then a proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I=p^{k} R$ for some prime element p of R and some positive integer $k \geq 1$ or $I=p_{1}^{n} p_{2}^{m} R$ for some distinct prime elements p_{1}, p_{2} of R and some positive integers $n, m \geq 1$.

The following is an example of a unique factorization domain that contains a 2-absorbing primary ideal not of the form $P_{1}^{n} P_{2}^{m}$ for some prime ideals P_{1}, P_{2} of R and some positive integers $n, m \geq 1$.

Example 2.13. Let $R=K[X, Y]$, where K is a field. Consider the ideal $I=\left(X, Y^{2}\right)$ of R. Then I is a 2 -absorbing primary ideal of R that is not of the form $P_{1}^{n} P_{2}^{m}$, where P_{1}, P_{2} are prime ideals of R and $n, m \geq 1$.

Let R be a commutative Noetherian ring with $1 \neq 0$. It is well-known that every proper ideal of R has a primary decomposition. Since every primary ideal is a 2 -absorbing primary ideal, we conclude that every proper ideal of R has a 2 -absorbing primary decomposition. However, decomposition of an ideal of R into 2-absorbing primary ideals need not be unique. We have the following example.
Example 2.14. In light of Corollary 2.12, consider the ideal (60) of \mathbb{Z}. Then

$$
(60)=(3) \cap(4) \cap(5)=(3) \cap(20)=(4) \cap(15)=(5) \cap(12) .
$$

Hence (60) has four distinct 2-absorbing primary decompositions. The ideal (210) of \mathbb{Z} has exactly ten distinct 2 -absorbing primary decompositions.

$$
\begin{aligned}
(210) & =(2) \cap(3) \cap(5) \cap(7)=(6) \cap(5) \cap(7)=(10) \cap(3) \cap(7) \\
& =(14) \cap(3) \cap(5)=(15) \cap(2) \cap(7)=(15) \cap(14)=(21) \cap(2) \cap(5) \\
& =(21) \cap(10)=(35) \cap(2) \cap(3)=(35) \cap(6) .
\end{aligned}
$$

Definition 2.15. Let I be a 2-absorbing primary ideal of R. Then $P=\sqrt{I}$ is a 2 -absorbing ideal by Theorem 2.2 . We say that I is a P-2-absorbing primary ideal of R.

Theorem 2.16. Let $I_{1}, I_{2}, \ldots, I_{n}$ be P-2-absorbing primary ideals of R for some 2-absorbing ideal P of R. Then $I=\bigcap_{i=1}^{n} I_{i}$ is a P-2-absorbing primary ideal of R.

Proof. First observe that $\sqrt{I}=\bigcap_{i=1}^{n} \sqrt{I_{i}}=P$. Suppose that $a b c \in I$ for some $a, b, c \in R$ and $a b \notin I$. Then $a b \notin I_{i}$ for some $1 \leq i \leq n$. Hence $b c \in \sqrt{I_{i}}=P$ or $a c \in \sqrt{I_{i}}=P$.

If I_{1}, I_{2} are 2-absorbing primary ideals of a ring R, then $I_{1} \cap I_{2}$ need not be a 2-absorbing primary ideal of R. We have the following example.
Example 2.17. Let $I_{1}=50 \mathbb{Z}$ and $I_{2}=75 \mathbb{Z}$. Then I_{1}, I_{2} are 2 -absorbing primary ideals of \mathbb{Z} by Corollary 2.12. Since $\sqrt{I_{1} \cap I_{2}}=2 \mathbb{Z} \cap 3 \mathbb{Z} \cap 5 \mathbb{Z}=30 \mathbb{Z}$, $I_{1} \cap I_{2}$ is not a 2-absorbing primary ideal of \mathbb{Z} by Theorem 2.3.

In the following result, we show that a proper ideal I of a ring R is a 2absorbing primary ideal of R if and only if whenever $I_{1} I_{2} I_{3} \subseteq I$ for some ideals I_{1}, I_{2}, I_{3} of R, then $I_{1} I_{2} \subseteq I$ or $I_{2} I_{3} \subseteq \sqrt{I}$ or $I_{1} I_{3} \subseteq \sqrt{I}$. But first we have the following lemma.

Lemma 2.18. Let I be a 2-absorbing primary ideal of a ring R and suppose that $a b J \subseteq I$ for some elements $a, b \in R$ and some ideal J of R. If $a b \notin I$, then $a J \subseteq \sqrt{I}$ or $b J \subseteq \sqrt{I}$.
Proof. Suppose that $a J \nsubseteq \sqrt{I}$ and $b J \nsubseteq \sqrt{I}$. Then $a j_{1} \notin \sqrt{I}$ and $b j_{2} \notin \sqrt{I}$ for some $j_{1}, j_{2} \in J$. Since $a b j_{1} \in I$ and $a b \notin I$ and $a j_{1} \notin \sqrt{I}$, we have $b j_{1} \in \sqrt{I}$. Since $a b j_{2} \in I$ and $a b \notin I$ and $b j_{2} \notin \sqrt{I}$, we have $a j_{2} \in \sqrt{I}$. Now, since $a b\left(j_{1}+j_{2}\right) \in I$ and $a b \notin I$, we have $a\left(j_{1}+j_{2}\right) \in \sqrt{I}$ or $b\left(j_{1}+j_{2}\right) \in \sqrt{I}$. Suppose that $a\left(j_{1}+j_{2}\right)=a j_{1}+a j_{2} \in \sqrt{I}$. Since $a j_{2} \in \sqrt{I}$, we have $a j_{1} \in \sqrt{I}$, a contradiction. Suppose that $b\left(j_{1}+j_{2}\right)=b j_{1}+b j_{2} \in \sqrt{I}$. Since $b j_{1} \in \sqrt{I}$, we have $b j_{2} \in \sqrt{I}$, a contradiction again. Thus $a J \subseteq \sqrt{I}$ or $b J \subseteq \sqrt{I}$.

Theorem 2.19. Let I be a proper ideal of R. Then I is a 2 -absorbing primary ideal if and only if whenever $I_{1} I_{2} I_{3} \subseteq I$ for some ideals I_{1}, I_{2}, I_{3} of R, then $I_{1} I_{2} \subseteq I$ or $I_{2} I_{3} \subseteq \sqrt{I}$ or $I_{1} I_{3} \subseteq \sqrt{I}$.

Proof. Suppose that whenever $I_{1} I_{2} I_{3} \subseteq I$ for some ideals I_{1}, I_{2}, I_{3} of R, then $I_{1} I_{2} \subseteq I$ or $I_{2} I_{3} \subseteq \sqrt{I}$ or $I_{1} I_{3} \subseteq \sqrt{I}$. Then clearly I is a 2 -absorbing primary ideal of R by definition.

Conversely, suppose that I is a 2-absorbing primary ideal of R and $I_{1} I_{2} I_{3} \subseteq I$ for some ideals I_{1}, I_{2}, I_{3} of R, such that $I_{1} I_{2} \nsubseteq I$. We show that $I_{1} I_{3} \subseteq \sqrt{I}$ or $I_{2} I_{3} \subseteq \sqrt{I}$. Suppose that neither $I_{1} I_{3} \subseteq \sqrt{I}$ nor $I_{2} I_{3} \subseteq \sqrt{I}$. Then there are $q_{1} \in I_{1}$ and $q_{2} \in I_{2}$ such that neither $q_{1} I_{3} \subseteq \sqrt{I}$ nor $q_{2} I_{3} \subseteq \sqrt{I}$. Since $q_{1} q_{2} I_{3} \subseteq I$ and neither $q_{1} I_{3} \subseteq \sqrt{I}$ nor $q_{2} I_{3} \subseteq \sqrt{I}$, we have $q_{1} q_{2} \in I$ by Lemma 2.18.

Since $I_{1} I_{2} \nsubseteq I$, we have $a b \notin I$ for some $a \in I_{1}, b \in I_{2}$. Since $a b I_{3} \subseteq I$ and $a b \notin I$, we have $a I_{3} \subseteq \sqrt{I}$ or $b I_{3} \subseteq \sqrt{I}$ by Lemma 2.18. We consider three cases. Case one: Suppose that $a I_{3} \subseteq \sqrt{I}$, but $b I_{3} \nsubseteq \sqrt{I}$. Since $q_{1} b I_{3} \subseteq I$ and neither $b I_{3} \subseteq \sqrt{I}$ nor $q_{1} I_{3} \subseteq \sqrt{I}$, we conclude that $q_{1} b \in I$ by Lemma 2.18. Since $\left(a+q_{1}\right) b I_{3} \subseteq I$ and $a I_{3} \subseteq \sqrt{I}$, but $q_{1} I_{3} \nsubseteq \sqrt{I}$, we conclude that $\left(a+q_{1}\right) I_{3} \nsubseteq \sqrt{I}$. Since neither $b I_{3} \subseteq \sqrt{I}$ nor $\left(a+q_{1}\right) I_{3} \subseteq \sqrt{I}$, we conclude that $\left(a+q_{1}\right) b \in I$ by Lemma 2.18. Since $\left(a+q_{1}\right) b=a b+q_{1} b \in I$ and $q_{1} b \in I$, we conclude that $a b \in I$, a contradiction. Case two: Suppose that $b I_{3} \subseteq \sqrt{I}$, but $a I_{3} \nsubseteq \sqrt{I}$. Since $a q_{2} I_{3} \subseteq I$ and neither $a I_{3} \subseteq \sqrt{I}$ nor $q_{2} I_{3} \subseteq \sqrt{I}$, we conclude that $a q_{2} \in I$. Since $a\left(b+q_{2}\right) I_{3} \subseteq I$ and $b I_{3} \subseteq \sqrt{I}$, but $q_{2} I_{3} \nsubseteq \sqrt{I}$, we conclude that $\left(b+q_{2}\right) I_{3} \nsubseteq \sqrt{I}$. Since neither $a I_{3} \subseteq \sqrt{I}$ nor $\left(b+q_{2}\right) I_{3} \subseteq \sqrt{I}$, we conclude that $a\left(b+q_{2}\right) \in I$ by Lemma 2.18. Since $a\left(b+q_{2}\right)=a b+a q_{2} \in I$ and $a q_{2} \in I$, we conclude that $a b \in I$, a contradiction. Case three: Suppose that $a I_{3} \subseteq \sqrt{I}$ and $b I_{3} \subseteq \sqrt{I}$. Since $b I_{3} \subseteq \sqrt{I}$ and $q_{2} I_{3} \nsubseteq \sqrt{I}$, we conclude that $\left(b+q_{2}\right) I_{3} \nsubseteq \sqrt{I}$. Since $q_{1}\left(b+q_{2}\right) I_{3} \subseteq I$ and neither $q_{1} I_{3} \subseteq \sqrt{I}$ nor
$\left(b+q_{2}\right) I_{3} \subseteq \sqrt{I}$, we conclude that $q_{1}\left(b+q_{2}\right)=q_{1} b+q_{1} q_{2} \in I$ by Lemma 2.18. Since $q_{1} q_{2} \in I$ and $q_{1} b+q_{1} q_{2} \in I$, we conclude that $b q_{1} \in I$. Since $a I_{3} \subseteq \sqrt{I}$ and $q_{1} I_{3} \nsubseteq \sqrt{I}$, we conclude that $\left(a+q_{1}\right) I_{3} \nsubseteq \sqrt{I}$. Since $\left(a+q_{1}\right) q_{2} I_{3} \subseteq I$ and neither $q_{2} I_{3} \subseteq \sqrt{I}$ nor $\left(a+q_{1}\right) I_{3} \subseteq \sqrt{I}$, we conclude that $\left(a+q_{1}\right) q_{2}=a q_{2}+q_{1} q_{2} \in I$ by Lemma 2.18. Since $q_{1} q_{2} \in I$ and $a q_{2}+q_{1} q_{2} \in I$, we conclude that $a q_{2} \in I$. Now, since $\left(a+q_{1}\right)\left(b+q_{2}\right) I_{3} \subseteq I$ and neither $\left(a+q_{1}\right) I_{3} \subseteq \sqrt{I}$ nor $\left(b+q_{2}\right) I_{3} \subseteq \sqrt{I}$, we conclude that $\left(a+q_{1}\right)\left(b+q_{2}\right)=a b+a q_{2}+b q_{1}+q_{1} q_{2} \in I$ by Lemma 2.18. Since $a q_{2}, b q_{1}, q_{1} q_{2} \in I$, we have $a q_{2}+b q_{1}+q_{1} q_{2} \in I$. Since $a b+a q_{2}+b q_{1}+q_{1} q_{2} \in I$ and $a q_{2}+b q_{1}+q_{1} q_{2} \in I$, we conclude that $a b \in I$, a contradiction. Hence $I_{1} I_{3} \subseteq \sqrt{I}$ or $I_{2} I_{3} \subseteq \sqrt{I}$.

Theorem 2.20. Let $f: R \rightarrow R^{\prime}$ be a homomorphism of commutative rings. Then the following statements hold.
(1) If I^{\prime} is a 2-absorbing primary ideal of R^{\prime}, then $f^{-1}\left(I^{\prime}\right)$ is a 2-absorbing primary ideal of R.
(2) If f is an epimorphism and I is a 2-absorbing primary ideal of R containing $\operatorname{Ker}(f)$, then $f(I)$ is a 2-absorbing primary ideal of R^{\prime}.
Proof. (1) Let $a, b, c \in R$ such that $a b c \in f^{-1}\left(I^{\prime}\right)$. Then $f(a b c)=f(a) f(b) f(c)$ $\in I^{\prime}$. Hence we have $f(a) f(b) \in I^{\prime}$ or $f(b) f(c) \in \sqrt{I^{\prime}}$ or $f(a) f(c) \in \sqrt{I^{\prime}}$, and thus $a b \in f^{-1}\left(I^{\prime}\right)$ or $b c \in f^{-1}\left(\sqrt{I^{\prime}}\right)$ or $a c \in f^{-1}\left(\sqrt{I^{\prime}}\right)$. By using the equality $f^{-1}\left(\sqrt{I^{\prime}}\right)=\sqrt{f^{-1}\left(I^{\prime}\right)}$, we conclude that $f^{-1}\left(I^{\prime}\right)$ is a 2 -absorbing primary ideal of R.
(2) Let $a^{\prime}, b^{\prime}, c^{\prime} \in R^{\prime}$ and $a^{\prime} b^{\prime} c^{\prime} \in f(I)$. Then there exist $a, b, c \in R$ such that $f(a)=a^{\prime}, f(b)=b^{\prime}, f(c)=c^{\prime}$, and $f(a b c)=a^{\prime} b^{\prime} c^{\prime} \in f(I)$. Since Ker $f \subseteq I$, we have $a b c \in I$. It implies that $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. This means that $a^{\prime} b^{\prime} \in f(I)$ or $a^{\prime} c^{\prime} \in f(\sqrt{I}) \subseteq \sqrt{f(I)}$ or $b^{\prime} c^{\prime} \in f(\sqrt{I}) \subseteq \sqrt{f(I)}$. Thus $f(I)$ is a 2 -absorbing primary ideal of R^{\prime}.

Corollary 2.21. Let R be a commutative ring with $1 \neq 0$. Suppose that I, J are distinct proper ideals of R. If $J \subseteq I$ and I is a 2-absorbing primary ideal of R, then I / J is a 2-absorbing primary ideal of R / J.

Proof. The proof is clear by Theorem 2.20(2).
Theorem 2.22. Let R be a commutative ring with $1 \neq 0, S$ be a multiplicatively closed subset of R, and I be a proper ideal of R. Then the following statements hold.
(1) If I is a 2-absorbing primary ideal of R such that $I \cap S=\varnothing$, then $S^{-1} I$ is a 2-absorbing primary ideal of $S^{-1} R$.
(2) If $S^{-1} I$ is a 2-absorbing primary ideal of $S^{-1} R$ and $S \cap Z_{I}(R)=\varnothing$, then I is a 2-absorbing primary ideal of R.
Proof. (1) Let $a, b, c \in R, s, t, k \in S$ such that $\frac{a}{s} \frac{b}{t} \frac{c}{k} \in S^{-1} I$. Then there exists $u \in S$ such that uabc $\in I$. Since I is a 2 -absorbing primary ideal, we get
$u a b \in I$ or $b c \in \sqrt{I}$ or $u a c \in \sqrt{I}$. If $u a b \in I$, then $\frac{a}{s} \frac{b}{t}=\frac{u a b}{u s t} \in S^{-1} I$. If $b c \in \sqrt{I}$, then $\frac{b}{t} \frac{c}{k} \in S^{-1} \sqrt{I}=\sqrt{S^{-1} I}$. If $u a c \in \sqrt{I}$, then $\frac{a}{s} \frac{c}{k}=\frac{u a c}{u s k} \in \sqrt{S^{-1} I}$.
(2) Let $a, b, c \in R$ such that $a b c \in I$. Then $\frac{a b c}{1}=\frac{a}{1} \frac{b}{1} \frac{c}{1} \in S^{-1} I$. It follows $\frac{a}{1} \frac{b}{1} \in S^{-1} I$ or $\frac{b}{1} \frac{c}{1} \in \sqrt{S^{-1} I}$ or $\frac{a}{1} \frac{c}{1} \in \sqrt{S^{-1} I}$. If $\frac{a}{1} \frac{b}{1}=\frac{a b}{1} \in S^{-1} I$, then $u a b \in I$, for some $u \in S$. Since $u \in S$ and $S \cap Z_{I}(R)=\varnothing$, we conclude $a b \in I$. If $\frac{b}{1} \frac{c}{1}=\frac{b c}{1} \in \sqrt{S^{-1} I}=S^{-1} \sqrt{I}$, then there exists $v \in S$ and a positive integer n such that $(v b c)^{n}=v^{n} b^{n} c^{n} \in I$. Since $v \in S$, we have $v^{n} \notin Z_{I}(R)$. Thus $b^{n} c^{n} \in I$, and so $b c \in \sqrt{I}$. If $\frac{a}{1} \frac{c}{1} \in \sqrt{S^{-1} I}$, then similarly we obtain $a c \in \sqrt{I}$, and it completes the proof.

Theorem 2.23. Let $R=R_{1} \times R_{2}$, where R_{1} and R_{2} are commutative rings with $1 \neq 0$. Let J be a proper ideal of R. Then the following statements are equivalent.
(1) J is a 2-absorbing primary ideal of R.
(2) Either $J=I_{1} \times R_{2}$ for some 2-absorbing primary ideal I_{1} of R_{1} or $J=R_{1} \times I_{2}$ for some 2-absorbing primary ideal I_{2} of R_{2} or $J=I_{1} \times I_{2}$ for some primary ideal I_{1} of R_{1} and some primary ideal I_{2} of R_{2}.

Proof. (1) $\Rightarrow(2)$. Assume that J is a 2 -absorbing primary ideal of R. Then $J=I_{1} \times I_{2}$ for some ideal I_{1} of R_{1} and some ideal I_{2} of R_{2}. Suppose that $I_{2}=R_{2}$. Since J is a proper ideal of $R, I_{1} \neq R_{1}$. Let $R^{\prime}=\frac{R}{\{0\} \times R_{2}}$. Then $J^{\prime}=\frac{J}{\{0\} \times R_{2}}$ is a 2 -absorbing primary ideal of R^{\prime} by Corollary 2.21. Since R^{\prime} is ring-isomorphic to R_{1} and $I_{1} \cong J^{\prime}, I_{1}$ is a 2 -absorbing primary ideal of R_{1}. Suppose that $I_{1}=R_{1}$. Since J is a proper ideal of $R, I_{2} \neq R_{2}$. By a similar argument as in the previous case, I_{2} is a 2 -absorbing primary ideal of R_{2}. Hence assume that $I_{1} \neq R_{1}$ and $I_{2} \neq R_{2}$. Then $\sqrt{J}=\sqrt{I_{1}} \times \sqrt{I_{2}}$. Suppose that I_{1} is not a primary ideal of R_{1}. Then there are $a, b \in R_{1}$ such that $a b \in I_{1}$ but neither $a \in I_{1}$ nor $b \in \sqrt{I_{1}}$. Let $x=(a, 1), y=(1,0)$, and $c=(b, 1)$. Then $x y c=(a b, 0) \in J$ but neither $x y=(a, 0) \in J$ nor $x c=(a b, 1) \in \sqrt{J}$ nor $y c=(b, 0) \in \sqrt{J}$, which is a contradiction. Thus I_{1} is a primary ideal of R_{1}. Suppose that I_{2} is not a primary ideal of R_{2}. Then there are $d, e \in R_{2}$ such that $d e \in I_{2}$ but neither $d \in I_{2}$ nor $e \in \sqrt{I_{2}}$. Let $x=(1, d), y=(0,1)$, and $c=(1, e)$. Then $x y c=(0, d e) \in J$ but neither $x y=(0, d) \in J$ nor $x c=(1, d e) \in \sqrt{J}$ nor $y c=(0, e) \in \sqrt{J}$, which is a contradiction. Thus I_{2} is a primary ideal of R_{2}.
(2) \Rightarrow (1). If $J=I_{1} \times R_{2}$ for some 2-absorbing primary ideal I_{1} of R_{1} or $J=R_{1} \times I_{2}$ for some 2-absorbing primary ideal I_{2} of R_{2}, then it is clear that J is a 2-absorbing primary ideal of R. Hence assume that $J=I_{1} \times I_{2}$ for some primary ideal I_{1} of R_{1} and some primary ideal I_{2} of R_{2}. Then $I_{1}^{\prime}=I_{1} \times R_{2}$ and $I_{2}^{\prime}=R_{1} \times I_{2}$ are primary ideals of R. Hence $I_{1}^{\prime} \cap I_{2}^{\prime}=I_{1} \times I_{2}=J$ is a 2-absorbing primary ideal of R by Theorem 2.4.

Theorem 2.24. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$, where $2 \leq n<\infty$, and $R_{1}, R_{2}, \ldots, R_{n}$ are commutative rings with $1 \neq 0$. Let J be a proper ideal of R. Then the following statements are equivalent.
(1) J is a 2-absorbing primary ideal of R.
(2) Either $J=\times_{t=1}^{n} I_{t}$ such that for some $k \in\{1,2, \ldots, n\}, I_{k}$ is a 2 absorbing primary ideal of R_{k}, and $I_{t}=R_{t}$ for every $t \in\{1,2, \ldots, n\} \backslash$ $\{k\}$ or $J=\times_{t=1}^{n} I_{t}$ such that for some $k, m \in\{1,2, \ldots, n\}, I_{k}$ is a primary ideal of R_{k}, I_{m} is a primary ideal of R_{m}, and $I_{t}=R_{t}$ for every $t \in\{1,2, \ldots, n\} \backslash\{k, m\}$.
Proof. We use induction on n. Assume that $n=2$. Then the result is valid by Theorem 2.23. Thus let $3 \leq n<\infty$ and assume that the result is valid when $K=R_{1} \times \cdots \times R_{n-1}$. We prove the result when $R=K \times R_{n}$. By Theorem $2.23, J$ is a 2-absorbing primary ideal of R if and only if either $J=L \times R_{n}$ for some 2-absorbing primary ideal L of K or $J=K \times L_{n}$ for some 2-absorbing primary ideal L_{n} of R_{n} or $J=L \times L_{n}$ for some primary ideal L of K and some primary ideal L_{n} of R_{n}. Observe that a proper ideal Q of K is a primary ideal of K if and only if $Q=\times_{t=1}^{n-1} I_{t}$ such that for some $k \in\{1,2, \ldots, n-1\}, I_{k}$ is a primary ideal of R_{k}, and $I_{t}=R_{t}$ for every $t \in\{1,2, \ldots, n-1\} \backslash\{k\}$. Thus the claim is now verified.
Acknowledgement. We would like to thank the referee for his/her great effort in proofreading the manuscript.

References

[1] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696.
[2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672.
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429.
[4] A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), no. 1, 83-91.
[5] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279.
[6] R. Gilmer, Multiplicative Ideal Theory, Queen Papers Pure Appl. Math. 90, Queen's University, Kingston, 1992.
[7] J. Huckaba, Rings with Zero-Divisors, New York/Basil, Marcel Dekker, 1988.
[8] S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012), no. 5-8, 265-271.

Ayman Badawi
Department of Mathematics \& Statistics
American University of Sharjah
P.O. Box 26666, Sharjah, United Arab Emirates

E-mail address: abadawi@aus.edu
Unsal Tekir
Department of Mathematics
Marmara University
Istanbul, Turkey
E-mail address: utekir@marmara.edu.tr

Ece Yetkin
Department of Mathematics
Marmara University
Istanbul, Turkey
E-mail address: ece.yetkin@marmara.edu.tr

[^0]: Received September 23, 2013; Revised January 14, 2014.
 2010 Mathematics Subject Classification. Primary 13A15; Secondary 13F05, 13G05.
 Key words and phrases. primary ideal, prime ideal, 2-absorbing ideal, n-absorbing ideal.

